Let f be the function f(x,y) = 4xy2 - x2y2 - xy3. Let D be the triangle with vertices (0,0), (6,0), and (0,6). Find the absolute extrema of function f over region D.

Respuesta :

Answer:

Step-by-step explanation:

given is a funciton

f(x,y) = [tex]4xy^2 - x^2y^2 - xy^3.[/tex]

To find extrema of the function in the region enclosed by a triangle with vertices (0,0), (6,0), and (0,6).

At corner points f values are

f(0,0) = 0

f(6,0) = 0

f(0,6) =0

We use partial derivatives to find local extrema

[tex]f_x = 4y^2-2xy^2-y^3\\f_y = 8xy-2x^2y -3xy^2[/tex]

Equate both to 0

We get extrema is at

x=0, y =0