A computer is reading data from a rotating CD-ROM. At a point that is 0.0268 m from the center of the disk, the centripetal acceleration is 339 m/s2. What is the centripetal acceleration at a point that is 0.0795 m from the center of the disc?

Respuesta :

Answer:

[tex]a_2 = 114.28\ m/s^2[/tex]

Explanation:

Given,

centripetal acceleration, [tex]a_1 =339\ m/s^2[/tex]

Distance from the center,[tex]r_1 = 0.0268\ m[/tex]

Centripetal acceleration,[tex] a_2 = ?[/tex]

Distance, [tex]r_2 = 0.0795\ m[/tex]

[tex]a_1 = \frac{v^2}{r_1}[/tex]

[tex] v= \dfrac{2\pi r_1}{T}[/tex]

[tex]a_1 = \frac{( \dfrac{2\pi r_1}{T})^2}{r_1}[/tex]

[tex]a_1 = \dfrac{4\pi^2 r_1}{T^2}[/tex]

similarly

[tex]a_2= \dfrac{4\pi^2 r_2}{T^2}[/tex]

now,

[tex]\dfrac{a_2}{a_1}= \dfrac{r_1}{r_2}[/tex]

[tex]a_2 = a_2\times \dfrac{r_1}{r_2}[/tex]

[tex]a_2 = 339\times \dfrac{0.0268}{0.0795}[/tex]

[tex]a_2 = 114.28\ m/s^2[/tex]

Hence, the acceleration of disc at 0.0795 m is equal to [tex]a_2 = 114.28\ m/s^2[/tex]