Particles with a charge of +5e are incident on a target. If the beam of particles carries a current of 138 µA, how many particles strike the target in a period of 25.0 s? particles

Respuesta :

Answer:

         [tex]4.31\times10^{15}particles[/tex]

Explanation:

Current (I) is the flow of charge (Q) per unit of time (t). The ampere unit is defined as the amount of charge that flows in one second.

             [tex]Current=I=\dfrac{Q}{t}[/tex]

            [tex]1\text{ }ampere=1\dfrac{coulomb}{second}[/tex]

You have the current, 138 µA, and the time, 25.0s, thus you can calculate the charge:

       [tex]Q=I\times t=138\mu A\times \dfrac{10^{-6}A}{\mu A}\times 25.0s=0.00345C[/tex]

Now calculate the number of particles with a charge of +5eV that have a charge of 0.00345C

The charge of one electron is [tex]1.602\times 10^{-19}C[/tex]

Then, a positve charge equivalent to the magnitude of the charge of 5 electrons (one particle) is:

                                       [tex]5\times 1.602\times 10^{-19}C=8.010\times 10^{-19}C[/tex]

Divide the total charge by the charge of a particle:

        [tex]\dfrac{0.00345C}{8.010\times 10^{-19}C}=4.3071\times 10^{15}[/tex]

Rounding to 3 significant figures that is    [tex]4.31\times 10^{15}particles[/tex]