What is the approximate length of NP with endpoints N (7,3) and P(-6,-2)? Round to the nearest tenth. (A 10.2 units) (B 13.9 units) (C 5.7 units) (D 6.5 units)

Respuesta :

Answer:

The correct option is B. 13.9 units

Therefore,

The approximate length of NP is 13.9 units.

Step-by-step explanation:

Given:

Let Points be,

point N( x₁ , y₁) ≡ ( 7 , 3)  

point P( x₂ , y₂) ≡ (-6, -2)  

To Find:  

length(NP) = ?

Solution:  

Distance Formula between two points say N and P is given as,

[tex]l(NP) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]

Substituting the values we get

[tex]l(NP) = \sqrt{((-6-7)^{2}+(-2-3)^{2} )}[/tex]

[tex]l(NP) = \sqrt{((-13)^{2}+(-5)^{2} )}[/tex]

[tex]l(NP) = \sqrt{169+25}=\sqrt{194}=13.92\approx 13.9\ units[/tex]

Therefore,

The approximate length of NP is 13.9 units.