The cost of a floral bouquet after a discount is applied is represented by the function below, where x represents the number of
flowers in the bouquet.
F(x) = $2.17x - $10.00
What is the average rate of change over the interval (12.24]?

Respuesta :

The average rate of change over the interval [tex](12,24)[/tex] is 2.17

Explanation:

Given that the cost of a floral bouquet after a discount is given by the function [tex]f(x)=2.17x-10.00[/tex]

We need to determine the average rate of change over the interval [tex](12,24)[/tex]

The average rate of change can be determined using the formula,

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

where [tex]a=12[/tex] and [tex]b=24[/tex]

Substituting the value of a and b in the function, we get,

[tex]f(12)=2.17(12)-10.00[/tex]

        [tex]=26.04-10.00[/tex]

        [tex]=16.04[/tex]

[tex]f(24)=2.17(24)-10.00[/tex]

        [tex]=52.08-10.00[/tex]

        [tex]=42.08[/tex]

Hence, substituting these values in the formula, we get,

[tex]\frac{f(b)-f(a)}{b-a}=\frac{42.08-16.04}{24-12}[/tex]

Simplifying, we get,

[tex]\frac{f(b)-f(a)}{b-a}=\frac{26.04}{12}[/tex]

Dividing, we have,

[tex]\frac{f(b)-f(a)}{b-a}=2.17[/tex]

Thus, the average rate of change over the interval [tex](12,24)[/tex] is 2.17