Respuesta :

Option A: [tex]x+1=3^{2}[/tex] is the correct statement

Explanation:

The expression is [tex]\log _{3}(x+1)=2[/tex]

We need to determine the statement which is true for the expression [tex]\log _{3}(x+1)=2[/tex]

Using logarithmic definition, if [tex]\log _{a}(b)=c[/tex] then [tex]b=a^{c}[/tex], we have,

[tex]x+1=3^{2}[/tex]

Simplifying,

[tex]x+1=9[/tex]

     [tex]x=8[/tex]

Now, we shall determine the statement which is true for the expression [tex]\log _{3}(x+1)=2[/tex]

Option A: [tex]x+1=3^{2}[/tex]

Simplifying, we get,

[tex]x+1=9[/tex]

     [tex]x=8[/tex]

Thus, the expression [tex]x+1=3^{2}[/tex] is equivalent to [tex]\log _{3}(x+1)=2[/tex]

Hence, Option A is the correct answer.

Option B: [tex]x+1=2^3[/tex]

Simplifying, we get,

[tex]x+1=8[/tex]

     [tex]x=7[/tex]

Since, the values of x from both the expressions are not equal.

Then, the expression  [tex]x+1=2^3[/tex] is not equivalent to [tex]\log _{3}(x+1)=2[/tex]

Hence, Option B is not the correct answer.

Option C: [tex]2(x+1)=3[/tex]

Simplifying, we get,

[tex]2x+2=3[/tex]

      [tex]2x=1[/tex]

       [tex]x=\frac{1}{2}[/tex]

Since, the values of x from both the expressions are not equal.

Then, the expression  [tex]2(x+1)=3[/tex] is not equivalent to [tex]\log _{3}(x+1)=2[/tex]

Hence, Option C is not the correct answer.

Option D: [tex]3(x+1)=2[/tex]

Simplifying, we get,

[tex]3x+3=2[/tex]

      [tex]3x=-1[/tex]

       [tex]x=-\frac{1}{3}[/tex]

Since, the values of x from both the expressions are not equal.

Then, the expression  [tex]3(x+1)=2[/tex] is not equivalent to [tex]\log _{3}(x+1)=2[/tex]

Hence, Option D is not the correct answer.

Answer:

Option A

Step-by-step explanation:

Did it on edge