Oint C is on line segment BD‾\overline{BD} BD . Given BD=5x,BD=5x, BD=5x, BC=4x,BC=4x, BC=4x, and CD=4,CD=4, CD=4, determine the numerical length of BD‾.\overline{BD}. BD .

Respuesta :

Answer:

Therefore the required value of [tex]\overline{BD}[/tex] is 20 units.

Step-by-step explanation:

Line Segment: Line segment is a portion of a line whose has two end points.

Given that point C is on the line segment [tex]\overline{BD}[/tex].

[tex]\overline{BD}[/tex] = 5x , [tex]\overline{BC}[/tex] = 4x and [tex]\overline{CD}[/tex] = 4

C is the point of the line segment of [tex]\overline{BD}[/tex].

So we can write

[tex]\overline {BD}= \overline{BC}+\overline{CD}[/tex]

Putting the values of [tex]\overline{BD}[/tex], [tex]\overline{BC}[/tex] and [tex]\overline{CD}[/tex]

5x=4x+ 4

⇒5x-4x= 4

⇒x=4

So we get the value of x.

To get the value of [tex]\overline{BD}[/tex] , we need to put the value of x in the value of [tex]\overline{BD}[/tex].

Therefore,

[tex]\overline{BD}[/tex] = 5×4

      =20

Therefore the required value of [tex]\overline{BD}[/tex] is 20 units.