Answer:
[tex]y=0.2x+284[/tex]
Step-by-step explanation:
Let x be the distance driven, d-distance and C our constant.
Our information can be presented as:
[tex]y=mx+c\\\\450=830x+C\ \ \ \ \ \ \ \ \ eqtn 1\\\\380=480x+C\ \ \ \ \ \ \ \ \ eqtn 2[/tex]
#Subtracting equation 2 from 1:
[tex]70=350x\\x=0.2[/tex]
Hence the fixed cost per mile driven,[tex]x[/tex] is $0.20
To find the constant,[tex]C[/tex] we substitute [tex]x[/tex] in any of the equations:
[tex]450=830x+C\ \ \ \ \ \ \ X=0.2\\\therefore C=450-830\times0.2\\=284[/tex]
Now, substituting our values in the linear equation:
[tex]y=0.2x+284[/tex] #y=cost of driving, x=distance driven
Hence the linear equation for the cost of driving is y+0.2x+284