Respuesta :
Answer:
y = -3x + 1
Step-by-step explanation:
Step 1: Determine what the values of x1, x2, y1, y2 are
To find the slope use the formula, m = [tex]\frac{y2-y1}{x2-x1}[/tex]
(x1, y1) is (1, -2)
(x2, y2) is (3, -8)
Step 2: Plug into the slope formula
m = [tex]\frac{y2-y1}{x2-x1}[/tex]
m = [tex]\frac{-8 - (-2)}{3-1}[/tex]
m = [tex]\frac{-8 + 2}{2}[/tex]
m = [tex]\frac{-6}{2}[/tex]
m = -3
Step 3: Determine what the values of y1, m, x1 in the point slope form
(y - y1) = m(x - x1)
(x1, y1) is (1, -2)
m = -3
Step 4: Plug into the point slope form
(y - y1) = m(x - x1)
(y - (-2)) = -3(x - 1)
y + 2 - 2 = -3x + 3 - 2
y = -3x + 1
Answer: y = -3x + 1
Answer:
Step-by-step explanation:
[tex]y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} (x-x_{1})\\y+2= \frac {-8+2}{3-1} (x-1)\\y+2=-3(x-1)\\or~y=-3x+3-2\\or~y=-3x+1[/tex]