Answer:
Vertex: (1,3)
Maximum
Step-by-step explanation:
Given the quadratic function [tex]y=-2x^2+4x+1[/tex].
First, find the coordinaes of the vertex:
[tex]x_v=\dfrac{-b}{2a}=\dfrac{-4}{2\cdot (-2)}=\dfrac{-4}{-4}=1\\ \\y_v=-2\cdot 1^2+4\cdot 1+1=-2+4+1=3[/tex]
Hence, the vertex is at point (1,3).
The leading coefficient is -2, this means parabola opens downwards and the value of the function at vertex is the maximum value of the function.