Answer:
144 sq in
Step-by-step explanation:
Face height=9, bases=6 in
#Assume the pyramid has a square base.
First we need to calculate the perpendicular height of the pyramid:
[tex]#Pythagorean \ Theorem\\a^2+b^2=c^2\\9^2-(0.5\times 6)^2=h^2\\72=h^2\\h=\sqrt{72} \ in[/tex]
Now to find the surface area of each pyramid:
[tex]A=lw+l\sqrt{(w/2)^2+h^2}+w\sqrt{(l/w)^2+h^2}\\\\\#w=l=6,h=\sqrt{72}\\\\A=6^2+6\sqrt{(6/2)^2+72}+6\sqrt{(6/6)^2+72}\\\\A\approx 144\ sq \ in[/tex]
Hence amount of construction paper needed to make each pyramid is 144 sq in