Respuesta :

Answer:

(1,3)

Step-by-step explanation:

The given function is

[tex]y = - 2 {x}^{2} + 4x + 1[/tex]

Factor 2 from the first two terms

[tex]y = - 2( {x}^{2} - 2x) + 1[/tex]

Add and subtract the square of half the coefficient of x.

[tex]y = - 2( {x}^{2} - 2x + 1 - 1) + 1[/tex]

Let us create perfect square trinomial

[tex]y = - 2( {x}^{2} - 2x + 1 ) + - 2 \times - 1 + 1[/tex]

This implies that:

[tex]y = - 2( {x - 1)}^{2}+ 3[/tex]

Therefore the vertex is (1,3).

We got this by comparing to

[tex]y = a( {x - h)}^{2} + k[/tex]