Respuesta :
Answer:
[tex]y=1,000(1.15)^x[/tex]
[tex]2,313\ bacteria[/tex]
Step-by-step explanation:
we know that
The equation of a exponential growth function is given by
[tex]y=a(1+r)^x[/tex]
where
y is the number of bacteria
a is the initial value
x is the number of days
r is the rate of change
we have
[tex]a=1,000\ bacteria\\r=15\%=15/100=0.15[/tex]
substitute
[tex]y=1,000(1+0.15)^x[/tex]
[tex]y=1,000(1.15)^x[/tex]
For x=6 days
substitute the value of x in the equation
[tex]y=1,000(1.15)^6=2,313\ bacteria[/tex]
Answer:
it is A
Step-by-step explanation:
Population after n days is given by
P_n=P_0(1+r)^n
Initial population, P₀ = 1000
Increase rate, r = 15 % = 0.15
Number of days, n = 6
Substituting
P_n=P_0(1+r)^n\\\\P_6=1000(1+0.15)^6\\\\P_6=1000(1.15)^6\\\\P_6=1000\times 2.313\\\\P_6=2313