Find the following currents. The current I1 through the resistor of resistance R1 = 15.0 Ω . The current I2 through the resistor of resistance R2 = 45.0 Ω . The current I3 through the resistor of resistance R3 = 20.0 Ω . The current I4 through the resistor of resistance R4 = 25.0 Ω .

Respuesta :

Answer:

[tex]I_{1}=0.32 A[/tex]

[tex]I_{2}=I_{3}=I_{4}=0.16 A[/tex]

Explanation:

Assuming the circuit is the shown in the attached image, where:

[tex]\Epsilon=12 V[/tex]

[tex]R_{1}=15 \Omega[/tex]

[tex]R_{2}=45 \Omega[/tex]

[tex]R_{3}=20 \Omega[/tex]

[tex]R_{4}=25 \Omega[/tex]

We can use the 2nd Kirchoff Law (or Voltage Law) for each section of the circuit:

1st section:

[tex]-\Epsilon+V_{1}+V_{2}=0[/tex]

2nd section:

[tex]-V_{2}+V_{3}+V_{4}=0[/tex]

Now, according to Ohm's Law, the voltage [tex]V[/tex] is equal to the multiplication of the current [tex]I[/tex] and the resistance [tex]R[/tex]:

[tex]V=IR[/tex]

Then:

1st section:

[tex]-\Epsilon+I_{1}R_{1}+I_{2}R_{2}=0[/tex] (1)

2nd section:

[tex]-I_{2}R_{2}+I_{3}R_{3}+I_{3}R_{4}=0[/tex] (2)

In this case the same current [tex]I_{3}[/tex] that gous trhough [tex]R_{3}[/tex] is the same that goes through [tex]R_{4}[/tex], since they are in series.

And according to 1st Kirchoff Law (or Current Law):

[tex]I_{1}=I_{3}+I_{2}[/tex] (3)

At this point we have a system with three equations. Let's begin by substituting (3) in (1):

[tex]\Epsilon=(I_{3}+I_{2})R_{1}+I_{2}R_{2}[/tex] (4)

[tex]\Epsilon=I_{3}R_{1}+I_{2}R_{1}+I_{2}R_{2}[/tex]

Applying common factor [tex]I_{2}[/tex]:

[tex]\Epsilon=(R_{1}+R_{2})I_{2}+I_{3}R_{1}[/tex] (5)

Isolating [tex]I_{3}[/tex] from (2):

[tex]I_{3}=\frac{R_{2}}{R_{3}+R_{4}}I_{2}[/tex] (6)

Rewriting with the known values:

[tex]I_{3}=\frac{45 \Omega}{20 \Omega+25 \Omega}I_{2}[/tex] (7)

[tex]I_{3}=I_{2}[/tex] (8)

Substituting (8) in (5):

[tex]\Epsilon=(R_{1}+R_{2})I_{3}+I_{3}R_{1}[/tex] (9)

Isolating [tex]I_{3}[/tex]:

[tex]I_{3}=\frac{\Epsilon}{2R_{1}+R_{2}}[/tex] (10)

Rewritting with the known values;

[tex]I_{3}=\frac{12 V}{2(15 \Omega)+45 \Omega}[/tex] (11)

[tex]I_{3}=0.16 A[/tex] (12)

Then: [tex]I_{3}=I_{2}=I_{4}=0.16 A[/tex]

Substituting (12) in (3):

[tex]I_{1}=0.16 A+0.16 A[/tex] (13)

[tex]I_{1}=0.32 A[/tex] (14)

Ver imagen cryssatemp