Answer:
[tex]s = 9.167\,ft[/tex]
Explanation:
Converting units into fundamental units is the first step. The maximum speed is:
[tex]v_{f} = (5\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )[/tex]
[tex]v_{f} = 7.333\,\frac{ft}{s}[/tex]
Let assume that Mike accelerates at a constant rate. Hence, accelaration is obtained from this formula:
[tex]a = \frac{v_{f}}{t}[/tex]
[tex]a = \frac{7.333\,\frac{ft}{s} }{2.5\,s}[/tex]
[tex]a = 2.933\,\frac{m}{s^{2}}[/tex]
Then, distance travelled by the unicycle can be found easily:
[tex]s = \frac{(7.333\,\frac{m}{s} )^{2}}{2\cdot (2.933\,\frac{m}{s^{2}} )}[/tex]
[tex]s = 9.167\,ft[/tex]