An electron that has a velocity with x component 2.6 × 106 m/s and y component 3.2 × 106 m/s moves through a uniform magnetic field with x component 0.041 T and y component -0.16 T. (a) Find the magnitude of the magnetic force on the electron. (b) Repeat your calculation for a proton having the same velocity.

Respuesta :

Answer:

a) [tex]\vec F_{B} = 8.766\times 10^{-14}\,T\,k[/tex], b) [tex]\vec F_{B} = -8.766\times 10^{-14}\,T\,k[/tex]

Explanation:

a) The magnetic force experimented by a particle has the following vectorial form:

[tex]\vec F_{B} = q\cdot \vec v \times \vec B[/tex]

The charge of the electron is equal to [tex]-1.602\times 10^{-19}\,C[/tex]. Then, cross product can be solved by using determinants:

[tex]\vec F_{B} = \begin{vmatrix}i&j&k\\-4.165\times 10^{-13}\, C\cdot \frac{m}{s} &-5.126\times 10^{-13}\,C\cdot \frac{m}{s} &0\,C\cdot \frac{m}{s} \\0.041\,T&-0.16\,T&0\,T\end{vmatrix}[/tex]

The magnetic force is:

[tex]\vec F_{B} = 8.766\times 10^{-14}\,T\,k[/tex]

b) The charge of the proton is equal to [tex]1.602\times 10^{-19}\,C[/tex]. Then, cross product has the following determinant:

[tex]\vec F_{B} = \begin{vmatrix}i&j&k\\4.165\times 10^{-13}\, C\cdot \frac{m}{s} &5.126\times 10^{-13}\,C\cdot \frac{m}{s} &0\,C\cdot \frac{m}{s} \\0.041\,T&-0.16\,T&0\,T\end{vmatrix}[/tex]

The magnetic force is:

[tex]\vec F_{B} = -8.766\times 10^{-14}\,T\,k[/tex]

This question involves the concepts of the magnetic field, triple-scalar product, and magnetic force.

(a) The magnitude of the magnetic force on the electron is " 0.876 x 10⁻¹³ N".

(b) The magnitude of the magnetic force on the proton is "-0.876 x 10⁻¹³ N".

(a)

The magnitude of a magnetic force applied on a charged particle due to the magnetic field is given by the following formula:

[tex]F=q.v\ x\ B[/tex]

where,

F = magnetic force = ?

q = charge on electron = -1.6 x 10⁻¹⁹ (i + j + k) C

v = velocity = (2.6 i + 3.2 j +0 k) x 10⁶ m/s

B = magnetic field = (0.041 i - 0.16 j + 0 k) T

Therefore,

[tex]F = (-1.6\ x\ 10^{-19}(i+j+k)\ C)).(2.6\ x\ 10^6i+3.2\ x\ 10^6j+0k)\ x\ (0.041i-0.16j+0k)[/tex]

This can be solved using the scalar-triple product:

[tex]F = \left|\begin{array}{ccc}-1.6\ x\ 10^{-19}&-1.6\ x\ 10^{-19}&-1.6\ x\ 10^{-19}\\2.6\ x\ 10^6&3.2\ x\ 10^6&0\\0.041&-0.16&0\end{array}\right|[/tex]

Expanding by column 3, we get:

[tex]F = (-1.6\ x\ 10^{-19})[(2.6\ x\ 10^6)(-0.16)-(3.2\ x\ 10^6)(0.041)]\\F = (-1.6\ x\ 10^{-19})(-0.416\ x\ 10^{6}-0.131\ x\ 10^6)\\F = (-1.6\ x\ 10^{-19})(-0.547\ x\ 10^{6})\\[/tex]

F = 0.876 x 10⁻¹³ N

(b)

For the proton the charge changes to:

q = 1.6 x 10⁻¹⁹ (i + j + k) C

Therefore,

[tex]F = (1.6\ x\ 10^{-19}(i+j+k)\ C)).(2.6\ x\ 10^6i+3.2\ x\ 10^6j+0k)\ x\ (0.041i-0.16j+0k)[/tex]

This can be solved using the scalar-triple product:

[tex]F = \left|\begin{array}{ccc}1.6\ x\ 10^{-19}&1.6\ x\ 10^{-19}&1.6\ x\ 10^{-19}\\2.6\ x\ 10^6&3.2\ x\ 10^6&0\\0.041&-0.16&0\end{array}\right|[/tex]

Expanding by column 3, we get:

[tex]F = (1.6\ x\ 10^{-19})[(2.6\ x\ 10^6)(-0.16)-(3.2\ x\ 10^6)(0.041)]\\F = (1.6\ x\ 10^{-19})(-0.416\ x\ 10^{6}-0.131\ x\ 10^6)\\F = (1.6\ x\ 10^{-19})(-0.547\ x\ 10^{6})\\[/tex]

F = - 0.876 x 10⁻¹³ N

Learn more about magnetic force here:

https://brainly.com/question/10353944?referrer=searchResults

Attached picture shows the formula of magnetic force.

Ver imagen hamzaahmeds