What is the area of this trapezoid?


86 in²

112 in²

148 in²

184 in²
Trapezoid A B C D with parallel sides D C and A B. Point F and E are on side D C. Point F is connected to point A by a dotted segment. Point E is connected to point B by a dotted segment. A B E F is a rectangle. D F is 3 inches. E C is 6 inches. E B is 8 inches. A B is 14 inches. god i need help

What is the area of this trapezoid 86 in 112 in 148 in 184 in Trapezoid A B C D with parallel sides D C and A B Point F and E are on side D C Point F is connect class=

Respuesta :

Area of the trapezoid = 148 inch²

Solution:

Base of the bottom side (AB) = 14 in

Base of the top side (DC) = DF + FE + EC

                                          = 3 in + 14 in + 6 in

                                          = 23 inch

Height of the trapezoid (BE) = 8 in

Parallel sides of the trapezoid are DC and AB.

To find the area of the trapezoid:

Area of the trapezoid = [tex]\frac{1}{2}\times \text{Sum of the parallel sides}\times \text{Height}[/tex]

                                    [tex]$=\frac{1}{2}\times({DC+AB})\times{BE}[/tex]

                                    [tex]$=\frac{1}{2}\times{(23+14)}\times{8}[/tex]

                                    [tex]$=\frac{1}{2}\times{37}\times{8}[/tex]

                                    [tex]$=148[/tex]

Area of the trapezoid = 148 inch