tvtbrb
contestada

16 POINTS HELP ASAP plzzzzzzzzz

Order these sizes of ribbon from least to greatest.

√3

2√3
√5

Respuesta :

Answer:

                            [tex]\large\boxed{\large\boxed{\sqrt{3} <\sqrt{5} <\pi <2\sqrt{3}}}[/tex]

Explanation:

You are comparing irrational numbers.

By inspection, i.e. at first sight you can only compare [tex]\sqrt{3} \text{ }and\text{ } 2\sqrt{3}[/tex] because they have the same radicand.

You can order: [tex]\sqrt{3} <2\sqrt{3}[/tex]

You can introduce the 2 inside the radical by squaring it:

       [tex]2\sqrt{3}=\sqrt{2^2\times3}=\sqrt{12}[/tex]

Since 5 is between 3 and 12, you can order:

  • [tex]\sqrt{3} <\sqrt{5} <\sqrt{12}[/tex]

Which is:

  • [tex]\sqrt{3} <\sqrt{5} <2\sqrt{3}[/tex]

You must know that π ≈ 3.14.

5 is less than 9 and the square root of 9 is 3; hence, [tex]\sqrt{5} <3[/tex] and [tex]\sqrt{5} <\pi[/tex]

Now you must determine whether π is less than or greater than [tex]\sqrt{12}[/tex]

Using a calculator or probing numbers between 3 and 4 you get [tex]\sqrt{12} \approx3.46[/tex]

Hence, the complete order is:

  •            [tex]\sqrt{3} <\sqrt{5} <\pi <2\sqrt{3}[/tex]