Respuesta :

Answer:

y = - [tex]\frac{7}{3}[/tex] x + [tex]\frac{5}{3}[/tex]

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Calculate m using the slope formula

m = (y₂ - y₁ ) / (x₂ - x₁ )

with (x₁, y₁ ) = (2, - 3) and (x₂, y₂ ) = (- 1, 4)

m = [tex]\frac{4+3}{-1-2}[/tex] = [tex]\frac{7}{-3}[/tex] = - [tex]\frac{7}{3}[/tex], thus

y = - [tex]\frac{7}{3}[/tex] x + c ← is the partial equation

To find c substitute either of the 2 points into the partial equation

Using (- 1, 4), then

4 = [tex]\frac{7}{3}[/tex] + c ⇒ c = 4 - [tex]\frac{7}{3}[/tex] = [tex]\frac{5}{3}[/tex]

y = - [tex]\frac{7}{3}[/tex] x + [tex]\frac{5}{3}[/tex] ← equation of line

the slope intercept form is y= -2.3x + 1