Respuesta :

The equivalent expressions are:

[tex]5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{5}{3}x +5(7) - \frac{3}{2}x +3(4)[/tex]

[tex]5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{x}{6} + 47[/tex]

[tex]5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{1}{6}x + 35 + 12[/tex]

Solution:

Given expression is:

[tex]5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4)[/tex]

We have to find the equivalent expression

By distributive property,

a(b + c) = ab + ac

Therefore, one of equivalent expression is:

[tex]5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{5}{3}x +5(7) - \frac{3}{2}x +3(4)[/tex]

The other equivalent expressions are:

[tex]5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{5}{3}x + 35 - \frac{3}{2}x +12\\\\Combine\ the\ like\ terms\\\\5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{10-9}{6}x + 35 + 12\\\\Simplify\ the\ above\\\\5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{1}{6}x + 35 + 12\\\\5(\frac{1}{3}x + 7) - 3(\frac{1}{2}x - 4) = \frac{x}{6} + 47[/tex]

Thus equivalent expression is found