let x1,x2, and x3 be linearly independent vectors in R^(n) and let y1=x2+x1; y2=x3+x2; y3=x3+x1. are y1,y2,and y3 linearly independent? prove your answere?

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]x_1,x_2[/tex] and [tex]x_3[/tex] are linearly independent.

By definition of linear independent there exits three scalar [tex]a_1,a_2[/tex] and [tex]a_3[/tex] such that

[tex]a_1x_1+a_2x_2+a_3x_3=0[/tex]

Where [tex]a_1=a_2=a_3=0[/tex]

[tex]y_1=x_2+x_1,y_2=x_3+x_2,y_3=x_3+x_1[/tex]

We have to prove that [tex]y_1,y_2[/tex] and [tex]y_3[/tex] are linearly independent.

Let [tex]b_1,b_2[/tex] and [tex]b_3[/tex] such that

[tex]b_1y_1+b_2y_2+b_3y_3=0[/tex]

[tex]b_1(x_2+x_1)+b_2(x_3+x_2)+b_3(x_3+x_1)=0[/tex]

[tex]b_1x_2+b_1x_1+b_2x_3+b_2x_2+b_3x_3+b_3x_1=0[/tex]

[tex](b_1+b_3)x_1+(b_2+b_1)x_2+(b_2+b_3)x_3=0[/tex]

[tex]b_1+b_3=0[/tex]

[tex]b_1=-b_3[/tex]...(1)

[tex]b_1+b_2=0[/tex]

[tex]b_1=-b_2[/tex]..(2)

[tex]b_2+b_3=0[/tex]

[tex]b_2=-b_3[/tex]..(3)

Because [tex]x_1,x_2[/tex] and [tex]x_3[/tex] are linearly independent.

From equation (1) and (3)

[tex]b_1=b_2[/tex]...(4)

Adding equation (2) and (4)

[tex]2b_1==0[/tex]

[tex]b_1=0[/tex]

From equation (1) and (2)

[tex]b_3=0,b_2=0,b_3=0[/tex]

Hence, [tex]y_1,y_2[/tex] and [tex]y_3[/tex] area linearly independent.