Answer:
[tex]v_x\approx4.0149\ m.s^{-1}[/tex]
[tex]v_y\approx-8.6099\ m.s^{-1}[/tex]
Explanation:
Given:
initial speed of the hammer when leaving the edge of the roof along the inclination of the roof, [tex]v=9.5\ m.s^{-1}[/tex]
inclination of the roof form horizontal, [tex]\theta=65^{\circ}[/tex]
Now the horizontal velocity:
[tex]v_x=v.\cos\theta[/tex]
[tex]v_x=9.5\times \cos65^{\circ}[/tex]
[tex]v_x\approx4.0149\ m.s^{-1}[/tex]
The vertical velocity:
[tex]v_y=-v.\sin\theta[/tex]
[tex]v_y=-9.5\times \sin65^{\circ}[/tex]
[tex]v_y\approx-8.6099\ m.s^{-1}[/tex]