Respuesta :

Step-by-step explanation:

[tex] \angle PTS\: \&\: \angle QTR[/tex] are vertically opposite angles.

[tex] \therefore \: \angle PTS\: = \: \angle QTR \\ \\ \therefore \: [11(y - 10)] \degree = (4y - 5)\degree \\ \\ \therefore \:11y - 110 = 4y - 5 \\ \\ \therefore \:11y - 4y = 110 - 5\\ \\ \therefore \:7y = 105 \\ \\ \therefore \:y = \frac{105}{5} \\ \\ \huge \red{ \boxed{\therefore \:y = 15}} \\ \\ \therefore \: m\angle PTS\: =[11(y - 10)] \degree \\ = [11(15- 10)] \degree \\ = [11 \times 5] \degree \\ \huge \orange{ \boxed{\therefore \: m\angle PTS\: = 55 \degree}}[/tex]