A galvanic cell at a temperature of 42 degrees Celcius is powered by the following redox reaction:

3CU2+(aq)+2Al(s)-->3Cu(s)+2Al3+(aq)

Suppose the cell is prepared with 3.43 M Cu2+n one half-cell and 1.63 M Al3+in the other.

Calculate the cell voltage under these conditions. Round your answer to 3 significant digits.

Respuesta :

Answer: The cell voltage of the given cell is 2.01

Explanation:

The given chemical cell equation follows:

[tex]3Cu^{2+}(aq.)+2Al(s)\rightarrow 3Cu(s)+2Al^{3+}(aq.)[/tex]

Oxidation half reaction: [tex]2Al(s)\rightarrow 2Al^{3+}(aq,1.63M)+3e^-;E^o_{Al^{3+}/Al}=-1.66V[/tex]       ( × 2)

Reduction half reaction: [tex]3Cu^{2+}(aq,3.43M)+2e^-\rightarrow 3Cu(s);E^o_{Cu^{2+}/Cu}=0.34V[/tex]      ( × 3)

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=0.34-(-1.66)=2.00V[/tex]

To calculate the EMF of the cell, we use the Nernst equation, which is:

[tex]E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Al^{3+}]^2}{[Cu^{2+}]^3}[/tex]

where,

[tex]E_{cell}[/tex] = electrode potential of the cell = ? V

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +2.00 V

R = Gas constant = 8.314 J/mol.K

T = temperature = [tex]42^oC=[42+273]K=315K[/tex]

F = Faraday's constant = 96500

n = number of electrons exchanged = 6

[tex][Cu^{2+}]=3.43M[/tex]

[tex][Al^{3+}]=1.63M[/tex]

Putting values in above equation, we get:

[tex]E_{cell}=2.00-\frac{2.303\times 8.314\times 315}{6\times 96500}\times \log(\frac{(1.63)^2}{(3.43)^3})[/tex]

[tex]E_{cell}=2.01[/tex]

Hence, the cell voltage of the given cell is 2.01