Respuesta :
Answer: The freezing point of solution is -10.9°C and the boiling point of solution is 103.°C
Explanation:
To calculate the mass of water, we use the equation:
[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]
Density of water = 1 g/mL
Volume of water = 129 mL
Putting values in above equation, we get:
[tex]1g/mL=\frac{\text{Mass of water}}{129mL}\\\\\text{Mass of water}=(1g/mL\times 129mL)=129g[/tex]
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
- The equation used to calculate depression in freezing point follows:
[tex]\Delta T_f=\text{Freezing point of pure solution}-\text{Freezing point of solution}[/tex]
To calculate the depression in freezing point, we use the equation:
[tex]\Delta T_f=iK_fm[/tex]
Or,
[tex]\text{Freezing point of pure solution}-\text{Freezing point of solution}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}[/tex]
where,
Freezing point of pure solution = 0°C
i = Vant hoff factor = 2 (For NaCl)
[tex]K_f[/tex] = molal freezing point elevation constant = 1.86°C/m
[tex]m_{solute}[/tex] = Given mass of solute (NaCl) = 22.1 g
[tex]M_{solute}[/tex] = Molar mass of solute (NaCl) = 58.5 g/mol
[tex]W_{solvent}[/tex] = Mass of solvent (water) = 129 g
Putting values in above equation, we get:
[tex]0-\text{Freezing point of solution}=2\times 1.86^oC/m\times \frac{22.1\times 1000}{58.5g/mol\times 129}\\\\\text{Freezing point of solution}=-10.9^oC[/tex]
Elevation in boiling point is defined as the difference in the boiling point of solution and boiling point of pure solution.
- The equation used to calculate elevation in boiling point follows:
[tex]\Delta T_b=\text{Boiling point of solution}-\text{Boiling point of pure solution}[/tex]
To calculate the elevation in boiling point, we use the equation:
[tex]\Delta T_b=iK_bm[/tex]
Or,
[tex]\text{Boiling point of solution}-\text{Boiling point of pure solution}=i\times K_b\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ in grams}}[/tex]
where,
Boiling point of pure solution = 100°C
i = Vant hoff factor = 2 (For NaCl)
[tex]K_b[/tex] = molal boiling point elevation constant = 0.512°C/m
[tex]m_{solute}[/tex] = Given mass of solute (NaCl) = 22.1 g
[tex]M_{solute}[/tex] = Molar mass of solute (NaCl) = 58.5 g/mol
[tex]W_{solvent}[/tex] = Mass of solvent (water) = 129 g
Putting values in above equation, we get:
[tex]\text{Boiling point of solution}-100=2\times 0.512^oC/m\times \frac{22.1\times 1000}{58.5g/mol\times 129}\\\\\text{Boiling point of solution}=103.^oC[/tex]
Hence, the freezing point of solution is -10.9°C and the boiling point of solution is 103.°C