Respuesta :
Answer:
F₄ = 29.819 N
Explanation:
Given
F₁ = (- 25*Cos 50° i + 25*Sin 50° j + 0 k) N
F₂ = (12*Cos 50° i + 12*Sin 50° j + 0 k) N
F₃ = (0 i + 0 j + 4 k) N
Then we have
F₁ + F₂ + F₃ + F₄ = 0
⇒ F₄ = - (F₁ + F₂ + F₃)
⇒ F₄ = - ((- 25*Cos 50° i + 25*Sin 50° j) N + (12*Cos 50° i + 12*Sin 50° j) N + (4 k) N) = (13*Cos 50° i - 37*Sin 50° j - 4 k) N
The magnitude of the force will be
F₄ = √((13*Cos 50°)² + (- 37*Sin 50°)² + (- 4)²) N = 29.819 N
The magnitude of the force should be 26.1N.
Calculation of the magnitude of the force:
Since
F1 =25i+0j+0k
F2=12cos100◦i +12sin100◦j +0k
F3 =0i+0j+4k
So,
total force=F
=F1+F2+F3
F=(25i+0j+0k)+(12cos100◦i +12sin100◦j +0k)+(0i+0j+4k)
F=(25+12cos100◦)i +12sin100◦ j +4k
F=(22.92)i +11.82 j +4k
Now the force that should counterbalance these three forces should be
-F
=-22.92i -11.82 j -4k
Now the magnitude should be
=sqrt((-22.92)2 +(-11.82)2+ (-4)2)
= 26.1N
Learn more about force here: https://brainly.com/question/18453410