Answer:
6.75 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration = 16 m/s²
g = Acceleration due to gravity = 9.81 m/s²
Let y be the distance the rocket is accelerating
960-y is the distance traveled in free fall
[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 16\times y+0^2}\\\Rightarrow v^2=32y\ m/s[/tex]
In free fall
[tex]v^2-u^2=2g(960-y)\\\Rightarrow 0-32y=2g(960-y)\\\Rightarrow -32y=2\times -9.81(960-y)\\\Rightarrow 960-y=\dfrac{-32}{2\times -9.81}y\\\Rightarrow 960-y=1.63098878695y\\\Rightarrow 960=2.63098878695y\\\Rightarrow y=\dfrac{960}{2.63098878695}\\\Rightarrow y=364.881828749\ m[/tex]
The distance the rocket will keep accelerating is 364.881828749 m
After which it will travel 960-364.881828749 = 595.118171251 m in free fall
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 364.881828749=0t+\frac{1}{2}\times 16\times t^2\\\Rightarrow t=\sqrt{\frac{364.881828749\times 2}{16}}\\\Rightarrow t=6.75353452598\ s[/tex]
The time the rocket is accelerating is 6.75 seconds