Respuesta :
Answer:
a) First figure attached
b) [tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{4}=4[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{154}{4}=38.5[/tex]
c) [tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=78-\frac{16^2}{4}=14[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=548-\frac{16*154}{4}=-68[/tex]
And the slope would be:
[tex]m=-\frac{68}{14}=-4.857[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=38.5-(-4.857*4)=57.929[/tex]
So the line would be given by:
[tex]y=-4.857 x +57.929[/tex]
d) [tex] r^2 = (-0.941)^2= 0.885[/tex]
So then the porcentage of variation explained is 88.5%
And the percentage of unexplained variation would be 100-88.5=11.5%
e) Using the least squares regression:
[tex]y(4) = -4.857*4 +57.929=38.501[/tex]
Using the excel equation with the [tex](\bar X, \bar Y)[/tex] we have:
[tex]y(4) = -3.8578*4 +51.616=36.185[/tex]
Step-by-step explanation:
We assume that the data is this one:
x: 0,2,5,6
y: 50,45,33,26
Part a
For this case on the figure attached we see the scatter plot of the data.
Part b
[tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{4}=4[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{154}{4}=38.5[/tex]
Find the least-squares line appropriate for this data.
For this case we need to calculate the slope with the following formula:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =16[/tex]
[tex]\sum_{i=1}^n y_i =154[/tex]
[tex]\sum_{i=1}^n x^2_i =78[/tex]
[tex]\sum_{i=1}^n y^2_i =6302[/tex]
[tex]\sum_{i=1}^n x_i y_i =548[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=78-\frac{16^2}{4}=14[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=548-\frac{16*154}{4}=-68[/tex]
And the slope would be:
[tex]m=-\frac{68}{14}=-4.857[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=38.5-(-4.857*4)=57.929[/tex]
So the line would be given by:
[tex]y=-4.857 x +57.929[/tex]
Part c
For this case we add the point (4.38.5) for the data and we got the equation as we can see on the figure attached.
y = -3.8578x + 51.616 (Equation adjusted with Excel)
Part d
[tex] r^2 = (-0.941)^2= 0.885[/tex]
So then the porcentage of variation explained is 88.5%
And the percentage of unexplained variation would be 100-88.5=11.5%
Part e
Using the least squares regression:
[tex]y(4) = -4.857*4 +57.929=38.501[/tex]
Using the excel equation with the [tex](\bar X, \bar Y)[/tex] we have:
[tex]y(4) = -3.8578*4 +51.616=36.185[/tex]

