Answer:
mean=14.7045
sample variance=103.96
standard deviation=10.196
Step-by-step explanation:
Class interval midpoints(x) frequency(f) fx
1-10 5.5 40 220
11-20 15.5 24 372
21-30 25.5 15 382.5
31 and over 35.5 9 319.5
mean=sumfx/sumf
sum fx=1294
sum f=n=40+24+15+9=88
mean=1294/88=14.7045
[tex]Variance={\frac{sumfx^2-\frac{(sumfx)^2}{n}}{n-1} }[/tex]
sumfx²=40(5.5)²+24(15.5)²+15(25.5)²+9(35.5)²=28072
[tex]Variance={\frac{28072-\frac{(1294)^2}{88}}{87} }[/tex]
Variance=103.9577=103.96
[tex]Standard deviation=\sqrt{\frac{sumfx^2-\frac{(sumfx)^2}{n}}{n-1} }[/tex]
[tex]Standard deviation=\sqrt{\frac{28072-\frac{(1294)^2}{88}}{87} }[/tex]
[tex]standard deviation=\sqrt{103.9577}[/tex]
standard deviation=10.196