Answer : The [α] for the solution is, -118.8
Explanation :
Enantiomeric excess : It is defined as the difference between the percentage major enantiomer and the percentage minor enantiomer.
Mathematically,
[tex]\%\text{ Enantiomer excess}=\%\text{ Major enantiomer}-\%\text{ Minor enantiomer}[/tex]
Given:
% major enantiomer = 86 %
% minor enantiomer = 14 %
Putting values in above equation, we get:
[tex]\%\text{ Enantiomer excess}=86\%-14\%=72\%[/tex]
[tex]\text{ Enantiomer excess}=\frac{72}{100}=0.72[/tex]
Now we have to calculate the [α] for the solution.
[tex][\alpha]=\text{Enantiomer excess}\times [\alpha]_{Pure}[/tex]
[tex][\alpha]=0.72\times -165[/tex]
[tex][\alpha]=-118.8[/tex]
Thus, the [α] for the solution is, -118.8