Given s left parenthesis t right parenthesis equals 5 t squared plus 5 ts(t)=5t2+5t​, find
​(a)
​v(t). ​ (b) ​ a(t).
​(c)
the velocity and acceleration when tequals=44.
​(a) ​v(t)equals=nothing
​(b) ​a(t)equals=nothing
​(c) When tequals=44​, the velocity is nothing feet per second.
​(Simplify your​ answer.)
When tequals=44​, the acceleration is nothing feet per second squared.

Respuesta :

Answer:

The velocity function is [tex]v(t)=10t+5[/tex].

The acceleration function is [tex]a(t)=10[/tex].

When t = 44​, the velocity is [tex]v(44)=445 \:\frac{ft}{s}[/tex].

When t = 44​, the acceleration is [tex]a(44)=10\: \frac{ft}{s^2}[/tex].

Step-by-step explanation:

We know that the position function is given by

[tex]s(t)=5t^2+5t[/tex]

Velocity is defined as the rate of change of position or the rate of displacement. If you take the derivative of the position function you get the instantaneous velocity function.

[tex]v(t)=\frac{ds}{dt}[/tex]

Acceleration is defined as the rate of change of velocity. If you take the derivative of the instantaneous velocity function you get the instantaneous acceleration function.

[tex]a(t)=\frac{dv}{dt}[/tex]

The instantaneous velocity function is given by

[tex]v(t)=\frac{d}{dt} s(t)=\frac{d}{dt}(5t^2+5t)\\\\\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'\\\\v(t)=\frac{d}{dt}\left(5t^2\right)+\frac{d}{dt}\left(5t\right)\\\\\mathrm{Apply\:the\:Power\:Rule}:\quad \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1}\\\\v(t)=10t+\frac{d}{dt}\left(5t\right)\\\\\mathrm{Apply\:the\:common\:derivative}:\quad \frac{d}{dt}\left(t\right)=1\\\\v(t)=10t+5[/tex]

The instantaneous acceleration function is given by

[tex]a(t)=\frac{dv}{dt} =\frac{d}{dt}(10t+5)\\\\\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'\\\\a(t)=\frac{d}{dt}\left(10t\right)+\frac{d}{dt}\left(5\right)\\\\a(t)=10[/tex]

To find the velocity and acceleration when t = 44, we substitute this value into the velocity and acceleration functions

[tex]v(44)=10(44)+5\\v(44)=445 \:\frac{ft}{s}[/tex]

[tex]a(44)=10\: \frac{ft}{s^2}[/tex]