Respuesta :

x = 12 and y = 10

Solution:

Given system of equations are

[tex]y=\frac{1}{6} x+8[/tex] – – – – (1)

[tex]y=\frac{3}{4} x+1[/tex] – – – – (2)

Both are equations of y.

So, we can equate both the equations.

[tex]$\frac{1}{6} x+8=\frac{3}{4} x+1[/tex]

Arrange like terms one sides.

[tex]$\frac{1}{6} x-\frac{3}{4} x=1-8[/tex]

[tex]$\frac{1}{6} x-\frac{3}{4} x=-7[/tex]

Take LCM of the denominators.

LCM of 6 and 4 = 12

Make the denominators same.

[tex]$\frac{1\times 2}{6\times 2} x-\frac{3\times 3}{4\times 3} x=-7[/tex]

[tex]$\frac{2}{12} x-\frac{9}{12} x=-7[/tex]

[tex]2x-9x=-7\times12[/tex]

[tex]-7x=-84[/tex]

Divide both side of the equation by –7, we get

x = 12

Substitute x = 12 in equation (1).

[tex]$y=\frac{1}{6} \times 12+8[/tex]

[tex]$y=2+8[/tex]

y = 10

Hence x = 12 and y = 10.