A certain reaction has an activation energy of 28.90 kJ / mol. At what Kelvin temperature will the reaction proceed 5.00 times faster than it did at 313 K?

Respuesta :

Answer: 365 K

Explanation:

According to the Arrhenius equation,

[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]

or,

[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_1[/tex] = rate constant at [tex]T_1[/tex] = 1.00

[tex]K_2[/tex] = rate constant at [tex]T_2[/tex] = 5.00

[tex]Ea[/tex] = activation energy for the reaction = 28.90 kJ/mol= 28900 j/mol

R = gas constant = 8.314 J/mole.K

[tex]T_1[/tex] = initial temperature = 313 K

[tex]T_2[/tex] = final temperature = ?

Now put all the given values in this formula, we get

[tex]\log (\frac{5.00}{1.00})=\frac{28900}{2.303\times 8.314J/mole.K}[\frac{1}{313K}-\frac{1}{T_2K}][/tex]

[tex]0.69=\frac{28900}{2.303\times 8.314J/mole.K}[\frac{1}{313K}-\frac{1}{T_2K}][/tex]

[tex]T_2=365K[/tex]

Therefore, 365 K is required to increase the reaction rate by 5.00 times.