Answer:
0.21632 m
Explanation:
f = Frequency = 260 Hz
[tex]\lambda[/tex] = Wavelength = 0.6 m
v = Velocity = [tex]f\lambda[/tex]
T = Tension = 225 N
m = Mass of string = [tex]2\times 10^{-3}\ kg[/tex]
L = Length of string
Velocity of wave is given by
[tex]v=\sqrt{\dfrac{T}{m/L}}\\\Rightarrow L=\dfrac{v^2m}{T}\\\Rightarrow L=\dfrac{(260\times 0.6)^2\times 2\times 10^{-3}}{225}\\\Rightarrow L=0.21632\ m[/tex]
The length of the string is 0.21632 m