Answer:
[tex]4.3859007196\times 10^{-9}\ m[/tex]
Explanation:
k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]
v = Velocity of electron = [tex]2.4\times 10^5\ m/s[/tex]
q = Charge of electron = [tex]1.6\times 10^{-19}\ C[/tex]
m = Mass of electron = [tex]9.11\times 10^{-31}\ kg[/tex]
r = Radius
The electrical and centripetal force will balance each other
[tex]\dfrac{kq^2}{r^2}=\dfrac{mv^2}{r}\\\Rightarrow r=\dfrac{kq^2}{mv^2}\\\Rightarrow r=\dfrac{8.99\times 10^9\times (1.6\times 10^{-19})^2}{9.11\times 10^{-31}\times (2.4\times 10^5)^2}\\\Rightarrow r=4.3859007196\times 10^{-9}\ m[/tex]
The radius of the orbital is [tex]4.3859007196\times 10^{-9}\ m[/tex]