Respuesta :

Note: As you may have unintentionally missed to add the value choices. But, I would make sure to explain the concept so that you may improve your understanding in terms of solving these type of questions.

Answer:

Any value other than the values [tex]x=\frac{1}{2},\:x=-\frac{1}{4}+i\frac{\sqrt{3}}{4},\:x=-\frac{1}{4}-i\frac{\sqrt{3}}{4}[/tex] will not be a solution of [tex]8x^3\:-\:1\:=\:0[/tex].

Step-by-step explanation:

Considering the equation

[tex]8x^3\:-\:1\:=\:0[/tex]

Steps to solve the equation

[tex]8x^3-1=0[/tex]

[tex]\mathrm{Add\:}1\mathrm{\:to\:both\:sides}[/tex]

[tex]8x^3-1+1=0+1[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]x^3=\frac{1}{8}[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}8[/tex]

[tex]\frac{8x^3}{8}=\frac{1}{8}[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]x^3=\frac{1}{8}[/tex]

As

[tex]\mathrm{For\:}x^3=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}[/tex]

[tex]x=\sqrt[3]{\frac{1}{8}},\:x=\sqrt[3]{\frac{1}{8}}\frac{-1+\sqrt{3}i}{2},\:x=\sqrt[3]{\frac{1}{8}}\frac{-1-\sqrt{3}i}{2}[/tex]

So,

[tex]x=\frac{1}{2},\:x=-\frac{1}{4}+i\frac{\sqrt{3}}{4},\:x=-\frac{1}{4}-i\frac{\sqrt{3}}{4}[/tex]

Therefore,

Any value other than the values [tex]x=\frac{1}{2},\:x=-\frac{1}{4}+i\frac{\sqrt{3}}{4},\:x=-\frac{1}{4}-i\frac{\sqrt{3}}{4}[/tex] will not be a solution of [tex]8x^3\:-\:1\:=\:0[/tex].

Keywords: solution, value

Learn more about equation solution from  brainly.com/question/1679491

#learnwithBrainly