Respuesta :

Option A: [tex]\frac{S R}{B C}=\frac{R T}{C A}[/tex]

Option C: [tex]\angle R\cong \angle C[/tex]

Solution:

Given ΔRST similar to ΔABC.

To determine which statements are true for the given similarity triangles.

Option A: [tex]\frac{S R}{B C}=\frac{R T}{C A}[/tex]

By the similarity theorem,

If two triangles are similar, then the corresponding angles are equal and the corresponding sides are in the same ratio or proportion.

Therefore, [tex]\frac{S R}{B C}=\frac{R T}{C A}[/tex]

It is true.

Option B: [tex]\angle S\cong \angle A[/tex]

By the similarity theorem, corresponding angles are equal.

∠S is corresponding to ∠B.

So, [tex]\angle S\cong \angle B[/tex].

That means ∠S is not corresponding to ∠A.

Therefore, it is false.

Option C: [tex]\angle R\cong \angle C[/tex]

By the similarity theorem, corresponding angles are equal.

∠R is corresponding to ∠C.

Therefore [tex]\angle R\cong \angle C[/tex].

It is true.

Option D: [tex]\frac{S R}{B C}=\frac{R T}{AB}[/tex]

We already, proved in option A that [tex]\frac{S R}{B C}=\frac{R T}{C A}.[/tex]

Therefore, [tex]\frac{S R}{B C}\neq \frac{R T}{AB}[/tex].

It is false.

Option A and Option C are true.

Hence  [tex]\frac{S R}{B C}=\frac{R T}{C A}[/tex] and [tex]\angle R\cong \angle C[/tex].