Respuesta :
Answer: [tex]X=\dfrac{A}{CD}[/tex]
If C=5.00 , D=9.00 , and A=3.00 , , then the value of x = [tex]\dfrac{1}{15}[/tex].
If A is halved while C and D remain constant,
D. The value of X is halved.
Step-by-step explanation:
The given equation : [tex]A=CDX[/tex]
Divide both sides by (CD) , we get
[tex]\dfrac{A}{CD}=X[/tex]
Or [tex]X=\dfrac{A}{CD}[/tex] (i)
If C=5.00 , D=9.00 , and A=3.00 , then
[tex]X=\dfrac{3}{5\times9}=\dfrac{1}{15}[/tex]
i.e. The value of x = [tex]\dfrac{1}{15}[/tex].
If A is halved while C and D remain constant.
Let [tex]A'=\dfrac{A}{2}[/tex]
Then ,
[tex]X'=\dfrac{A'}{CD}=\dfrac{(\dfrac{A}{2})}{CD}\\\\=\dfrac{A}{2CD}[/tex]
i.e. [tex]X'=(\dfrac{1}{2})(\dfrac{A}{CD})=\dfrac{1}{2}(X)[/tex] [From (i)]
Thus , If A is halved while C and D remain constant, then the value of X is halved.
Option (D) will be the correct option.
Given equation in the question,
- A = CDX
If A = 3, C = 5 and D = 9,
By substituting these values in the equation given,
3 = 5 × 9 × X
X = [tex]\frac{3}{45}[/tex]
X = [tex]\frac{1}{15}[/tex]
If A is halved while C and D remains constant,
[tex]\frac{3}{2}=5\times 9\times X[/tex]
[tex]X=\frac{3}{2\times 5\times 9}[/tex]
[tex]X=\frac{1}{30}[/tex]
[tex]X=\frac{1}{15}\times \frac{1}{2}[/tex]
Therefore, value of X will be halved. Option (D) will be the answer.
Learn more,
https://brainly.com/question/19242707