Answer:
[tex]Point\ slope\ form:\ y+8=\frac{7}{8}(x+4)\\\\Final\ equation:\ 7x-8y=36[/tex]
Step-by-step explanation:
Equation of line in point slope form: Equation of line passing through the point [tex](x_1,y_1)\ and\ (x_2,y_2)[/tex] is given by
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]Here\ (x_1,y_1)=(-4,-8)\ and\ (x_2,y_2)=(4,-1)\\\\Equation:\ (y-(-8))=\frac{-1(-8)}{4-(-4)}\ (x-(-4))\\\\y+8=\frac{7}{8}(x+4)\\\\Here\ slope=\frac{7}{8}\\\\Point\ slope\ form: y+8=\frac{7}{8}(x+4)[/tex]
Final Equation:
[tex]Multiply\ both\ sides\ by\ 8.\\8(y+8)=7(x+4)\\\\8y+64=7x+28\\\\7x-8y=64-28\\\\7x-8y=36[/tex]