Factor out the GCF from the terms of the polynomial –4y5 + 6y3 + 8y2 – 2y. A. –2y4 + 3y2 + 4y – 1 B. y(–4y4 + 6y2 + 8y – 2) C. 2y(–2y4 + 3y2 + 2y) D. –2y(2y4 – 3y2 – 4y + 1)

Respuesta :

Answer:

Option D) [tex]-2y(2y^4-3y^2-4y+1)[/tex] is correct

Therefore [tex]-4y^5+6y^3+8y^2-2y=-2y(2y^4-3y^2-4y+1)[/tex]

Step-by-step explanation:

Given polynomial is [tex]-4y^5+6y^3+8y^2-2y[/tex]

To factorise the given polynomial by taking out the common terms of the given polynomial :

  • [tex]-4y^5+6y^3+8y^2-2y[/tex]
  • [tex]=2y(-2y^4+3y^2+4y-1)[/tex] ( here 2y is GCF common term so taking outside the terms of the polynomial )
  • [tex]=-2y(2y^4-3y^2-4y+1)[/tex] ( now taking (-) outside )

Therefore [tex]-4y^5+6y^3+8y^2-2y=-2y(2y^4-3y^2-4y+1)[/tex]

Option D) [tex]-2y(2y^4-3y^2-4y+1)[/tex] is correct