Respuesta :
Answer:
No balls
Step-by-step explanation:
Given:
The radius of the ball = 2 m
Height of the ball bin = 3.2 metres
Length of of the ball bin = 1 meters
Width of the ball bin = 1.5 metres
To Find:
How many balls should fit inside the bin = ?
Solution:
Step 1: Finding the volume of the ball
The volume of the ball = [tex]\frac{4}{3} \pi r^3[/tex]
Substituting the value,
=>[tex]\frac{4}{3} \pi (2)^3[/tex]
=>[tex]\frac{4}{3} \pi (8)[/tex]
=>[tex]\frac{100.48}{3}[/tex]
=> 33.49
=>33.5 cubic meters
Step 2: Finding the packing space per ball
=> [tex]190 \% \times \text{volume of one ball}[/tex]
=>[tex]\frac{190}{100} \times 33.5[/tex]
=> [tex]1.9 \times 33.5[/tex]
=>[tex]\frac{4.8}{63.65}[/tex] cubic meters
Step 3: Finding the volume of the container
The volume of the rectangular prism (packing box )
=> [tex]Length \times width \times height[/tex]
=>[tex]1\times 1.5\times 3.2[/tex]
=>4.8 cubic meters
Step 4: Finding the number of ball that can fit in the container
Number of ball = [tex]\frac{\text{ volume of the container}}{\text{ the packing space per ball}}[/tex]
Number of ball = [tex]\frac{4.8}{63.65}[/tex]
Number of ball = 0.07
No balls can be packed in the bock since the volume of the box is lesser than the packing space required per ball