Respuesta :
Answer:
[tex]10x^5y\sqrt{6xy}[/tex]
Step-by-step explanation:
We are given;
[tex]\sqrt{5x^8y^2}*\sqrt{10x^3}*\sqrt{12y}[/tex]
Solving the expression;
[tex]\sqrt{(5x^8y^2)(10x^3)(12y)}[/tex]
We get;
[tex]\sqrt{(600x^1^1y^3}[/tex]
We can factor it out into;
[tex]\sqrt{(100x^1^0y^2)}*\sqrt{6xy}[/tex]
This gives us;
[tex]10x^5y\sqrt{6xy}[/tex]
Therefore;
The product of the expression is [tex]10x^5y\sqrt{6xy}[/tex]
Answer:
B, go check out the other answer. I'm just making it easier to find
Step-by-step explanation: