Respuesta :

Answer:

[tex]10x^5y\sqrt{6xy}[/tex]

Step-by-step explanation:

We are given;

[tex]\sqrt{5x^8y^2}*\sqrt{10x^3}*\sqrt{12y}[/tex]

Solving the expression;

[tex]\sqrt{(5x^8y^2)(10x^3)(12y)}[/tex]

We get;

[tex]\sqrt{(600x^1^1y^3}[/tex]

We can factor it out into;

[tex]\sqrt{(100x^1^0y^2)}*\sqrt{6xy}[/tex]

This gives us;

[tex]10x^5y\sqrt{6xy}[/tex]

Therefore;

The product of the expression is [tex]10x^5y\sqrt{6xy}[/tex]

Jedfry

Answer:

B, go check out the other answer. I'm just making it easier to find

Step-by-step explanation: