Respuesta :

frika

Answer:

23.1 ft

Step-by-step explanation:

Consider right triangle LMN. In this triangle,

[tex]m\angle M=55^{\circ}\\ \\LN=16\ ft[/tex]

By sine definition,

[tex]\sin \angle M=\dfrac{\text{Opposite leg}}{\text{Hypotenuse}}=\dfrac{LN}{LM}=\dfrac{16}{LM}\\ \\LM=\dfrac{16}{\sin 55^{\circ}}[/tex]

In triangle KLM, by sine theorem,

[tex]\dfrac{LM}{\sin \angle K}=2R,[/tex]

where R is the radius of circumscribed circle.

Therefore,

[tex]R=\dfrac{1}{2}\cdot \dfrac{\dfrac{16}{\sin 55^{\circ}}}{\sin 25^{\circ}}=\dfrac{8}{\sin 55^{\circ}\cdot \sin 25^{\circ}}\approx 23.1\ ft[/tex]

Answer:

Full decimal:

~ 23.10879