A person holding a 15.0 kg containing one 50.0 g bullet is riding on a train that is traveling at 75.0 km/h east. If the man fires the gun and the bullet moves with a velocity of 350 m/s east(relative to the train), what is the velocity of the gun relative to the ground

Respuesta :

Answer:

The velocity of the gun relative to the ground is 19.66 m/s

Explanation:

Given data,

The mass of the gun, M = 15.0 kg

The mass of the bullet, m = 50 g

The velocity of the train, v = 75 km/h

                                           = 20.83 m/s

The velocity of bullet relative to train, V' = 350 m/s

The velocity of bullet relative to ground, V = 350 + 20

                                                                       = 370 m/s

According to the law of conservation of momentum,

                                Mv' + mV' = 0

                                   [tex]v' = -\frac{mV'}{M}[/tex]

                                   [tex]v' = -\frac{0.050\times 350}{15}[/tex]

                                      = -1.17 m/s

Therefore, the velocity of the gun with,

                                   v₀ = V + v'

                                        = 20.83 - 1.17

                                         = 19.66 m/s

Hence, the velocity of the gun relative to the ground is 19.66 m/s

The velocity of the gun relative to the ground is 19.73 m/

The given parameters;

  • mass of the person, m₁ = 15 kg
  • mass of the bullet, m₂ = 50 g = 0.05 kg
  • velocity of the train, u₁ = 75 km/h = 20.83 m/s
  • velocity of the bullet, u₂ = 350 m/s

Apply the principle of conservation of linear momentum, to determine the velocity of the gun relative to the ground;

[tex]v(m_1 + m_2) = m_1 u_1 + m_2 u_2\\\\20.83(15 + 0.05) = 15u_1 + 0.05(350)\\\\313.49= 15u_1 + 17.5\\\\15u_1 = 295.99\\\\\mu_1 =\frac{295.99}{15} \\\\\mu_1 = 19.73 \ m/s[/tex]

Thus, the velocity of the gun relative to the ground is 19.73 m/s.

Learn more here:https://brainly.com/question/24424291