Respuesta :

Answer:

x = [tex]e^{\frac{\pi}{2}}[/tex]

Step-by-step explanation:

Data provided in the question:

f'(x) = cos(ln x)

For finding points of maxima or minima , put f'(x) = 0

therefore,

cos(ln x) = 0

or

cos(ln x) = [tex]\cos(\frac{\pi}{2})[/tex]

or

ln x = [tex]\frac{\pi}{2}[/tex]

or

x = [tex]e^{\frac{\pi}{2}}[/tex]

now to check for maxima or minima at x = [tex]e^{\frac{\pi}{2}}[/tex]

f"(x) = [tex]-\sin(\ln x)\times\frac{1}{x}[/tex]

thus

at x = [tex]e^{\frac{\pi}{2}}[/tex]

f"(x) = [tex]-\sin(\ln (e^{\frac{\pi}{2}}))\times\frac{1}{e^{\frac{\pi}{2}}}[/tex]

= [tex]-\sin(e^{\frac{\pi}{2}})\times e^{-\frac{\pi}{2}}}[/tex]

=  [tex]-1\times e^{-\frac{\pi}{2}}}[/tex] < 0

hence maxima at x = [tex]e^{\frac{\pi}{2}}[/tex]