Respuesta :
Answer:
The measure of angle of right angle triangle, right angled at A is
Cos A = [tex]\dfrac{\textrm 15}{\tetrm 17}[/tex]
Tan A = [tex]\dfrac{\textrm 8}{\tetrm 15}[/tex]
Sin A = [tex]\dfrac{\textrm 8}{\tetrm 17}[/tex]
Step-by-step explanation:
Given as :
The measure of the sides of the right angle triangle , right angled at A are
The measure of side AB = 15 unit
The measure of side BC = 17 unit
The measure of side AC = 8 unit
Now, As The triangle is right angled at A
So, From figure
Cos A = [tex]\dfrac{\textrm Base}{\tetrm Hypotenuse}[/tex]
Or, Cos A = [tex]\dfrac{\textrm AB}{\tetrm BC}[/tex]
∴ Cos A = [tex]\dfrac{\textrm 15}{\tetrm 17}[/tex]
Again
Tan A = [tex]\dfrac{\textrm Perpendicular}{\tetrm Base}[/tex]
Or, Tan A = [tex]\dfrac{\textrm AC}{\tetrm AB}[/tex]
∴ Tan A = [tex]\dfrac{\textrm 8}{\tetrm 15}[/tex]
Similarly
Sin A = [tex]\dfrac{\textrm Perpendicular}{\tetrm Hypotenuse}[/tex]
Or, Sin A = [tex]\dfrac{\textrm AC}{\tetrm BC}[/tex]
∴ Sin A = [tex]\dfrac{\textrm 8}{\tetrm 17}[/tex]
Hence The measure of angle of right angle triangle, right angled at A is
Cos A = [tex]\dfrac{\textrm 15}{\tetrm 17}[/tex]
Tan A = [tex]\dfrac{\textrm 8}{\tetrm 15}[/tex]
Sin A = [tex]\dfrac{\textrm 8}{\tetrm 17}[/tex] Answer
