Respuesta :

Answer:

The measure of angle of right angle triangle, right angled at A is

Cos A = [tex]\dfrac{\textrm 15}{\tetrm 17}[/tex]

Tan A = [tex]\dfrac{\textrm 8}{\tetrm 15}[/tex]

Sin A = [tex]\dfrac{\textrm 8}{\tetrm 17}[/tex]

Step-by-step explanation:

Given as :

The measure of the sides of the right angle triangle , right angled at A are

The measure of side AB = 15 unit

The measure of side BC = 17 unit

The measure of side AC = 8 unit

Now, As The triangle is right angled at A

So, From figure

Cos A = [tex]\dfrac{\textrm Base}{\tetrm Hypotenuse}[/tex]

Or, Cos A = [tex]\dfrac{\textrm AB}{\tetrm BC}[/tex]

∴ Cos A = [tex]\dfrac{\textrm 15}{\tetrm 17}[/tex]

Again

Tan A = [tex]\dfrac{\textrm Perpendicular}{\tetrm Base}[/tex]

Or, Tan A = [tex]\dfrac{\textrm AC}{\tetrm AB}[/tex]

∴ Tan A = [tex]\dfrac{\textrm 8}{\tetrm 15}[/tex]

Similarly

Sin A = [tex]\dfrac{\textrm Perpendicular}{\tetrm Hypotenuse}[/tex]

Or, Sin A = [tex]\dfrac{\textrm AC}{\tetrm BC}[/tex]

∴ Sin A = [tex]\dfrac{\textrm 8}{\tetrm 17}[/tex]

Hence The measure of angle of right angle triangle, right angled at A is

Cos A = [tex]\dfrac{\textrm 15}{\tetrm 17}[/tex]

Tan A = [tex]\dfrac{\textrm 8}{\tetrm 15}[/tex]

Sin A = [tex]\dfrac{\textrm 8}{\tetrm 17}[/tex]    Answer

Ver imagen WaywardDelaney