Respuesta :
Answer:
The compress of the spring is 0.495.
Explanation:
Given that,
Mass = 50 kg
Spring constant = 8000 N/m
height = 2.0 m
We need to calculate the compress of the spring
Using law of conservation of energy
[tex]mgh=\dfrac{1}{2}kx^2[/tex]
Where, m = mass
g = acceleration due to gravity
h = height
k = spring constant
x = distance
Put the value into the formula
[tex]50\times9.8\times2.0=\dfrac{1}{2}\times8000\times x^2[/tex]
[tex]x=\sqrt{\dfrac{2\times50\times9.8\times2.0}{8000}}[/tex]
[tex]x=0.495\ m[/tex]
Hence, The compress of the spring is 0.495.
Answer:
[tex]\Delta x=61.25\ mm[/tex]
Explanation:
Given:
- height of the ledge placed on a spring, [tex]h=2\ m[/tex]
- stiffness of the spring, [tex]k=8000\ N.m^{-1}[/tex]
- mass of the body placed over the ledge, [tex]m=50\ kg[/tex]
Now the load on the spring due to body weight:
[tex]w=m.g[/tex]
[tex]w=50\times 9.8[/tex]
[tex]w=490\ N[/tex]
As we know:
[tex]F=k.\Delta x[/tex]
where F is the force of compression
[tex]\Delta x=\frac{w}{k}[/tex]
[tex]\Delta x=\frac{490}{8000}[/tex]
[tex]\Delta x=0.06125\ m[/tex]
[tex]\Delta x=61.25\ mm[/tex]