Answer:
[tex]6.99535\times 10^{-6}\ V/m[/tex]
Explanation:
P = Power Output = 1000 W
r = Radius = 35000000 m
[tex]\epsilon_0[/tex] = Permittivity of free space = [tex]8.85\times 10^{-12}\ F/m[/tex]
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
Intensity of Electric radiation is given by
[tex]I=\dfrac{P}{A}\\\Rightarrow I=\dfrac{P}{4\pi r^2}\\\Rightarrow I=\dfrac{1000}{4\pi\times 35000000^2}\ W/m^2[/tex]
Intensity of Electric radiation is given by
[tex]I=\dfrac{1}{2}c\epsilon_0E_0\\\Rightarrow E_0=\sqrt{\dfrac{2I}{c\epsilon_0}}\\\Rightarrow E_0=\sqrt{\dfrac{2\times \dfrac{1000}{4\pi\times 35000000^2}}{3\times 10^8\times 8.85\times 10^{-12}}}\\\Rightarrow E_0=6.99535\times 10^{-6}\ V/m[/tex]
The amplitude of the electric field vector is [tex]6.99535\times 10^{-6}\ V/m[/tex]