The amount of​ carbon-14 present in a paint after t years is given by y equals y Subscript o Baseline e Superscript negative 0.00012 t Baseline .y=yoe−0.00012t. The paint contains 1414​% of its​ carbon-14. How old are the​ paintings?

Respuesta :

Answer:

16,383.33 years ( approx )

Step-by-step explanation:

Given equation that shows the amount of carbon-14 after t years,

[tex]y = y_0 e^{-0.00012t}[/tex]

Where,

[tex]y_0[/tex] = initial amount,

∵ 14% of [tex]y_0[/tex] = [tex]\frac{14}{100}y_0[/tex] = [tex]\frac{7}{50}y_0[/tex]

[tex]\frac{7}{50}y_0= y_0 e^{-0.00012t}[/tex]

[tex]\frac{7}{50}=e^{-0.00012t}[/tex]

Taking ln both sides,

[tex]\ln(\frac{7}{50})=-0.00012t[/tex]

[tex]-1.966=-0.00012t[/tex]

[tex]\implies t =\frac{-1.966}{-0.00012}=16383.33[/tex]

Hence, the painting would be 16383.33 years old ( approx )