Answer:
E = 2.5 x 10⁻¹⁴ J
Explanation:
given,
diameter = 1.33 x 10⁻¹⁴ m
mass = 6.64 x 10⁻²⁷ kg
wavelength is equal to diameter
de broglie wavelength equal to diameter
[tex]\lambda = \dfrac{h}{mv}[/tex]
[tex]1.33 \times 10^{-14}= \dfrac{6.626 \times 10^{-34}}{6.64 \times 10^{-27}\times v}[/tex]
[tex]v= \dfrac{6.626 \times 10^{-34}}{6.64 \times 10^{-27}\times 1.33 \times 10^{-14}}[/tex]
v = 7.5 x 10⁶ m/s
Kinetic energy is equal to
[tex]E = \dfrac{1}{2}mv^2[/tex]
[tex]E = \dfrac{1}{2}\times 6.64 \times 10^{-27}\times (7.5\times 10^6)^2[/tex]
E = 2.5 x 10⁻¹⁴ J